Why Matlab?
Matlab is an interactive, high-level, user-friendly programming and visualization environment. It allows much faster programs development in comparison with the traditional low-level compiled languages like Fortran or C.
The trade-off here is the execution speed. The Matlab code may run 10 times slower than the corresponding Fortran/C code. But modern computers are fast!

Matlab as a calculator
Typing matlab from the Unix prompt will start the program.
Simple calculations can be performed interactively:

```
>> 7+(19-6)*8^2/4-3   % simple example
ans =
 212
```

Matlab performs here basic arithmetic operations + - * / and exponentiation ^ on integers following the same precedence/order of evaluation rules as in Fortran/C languages: 1) parentheses, 2) exponentiation, 3) multiplication/division, 4) addition/subtraction;
% a comment, Matlab ignores everything to the right of this symbol;
an
s is a built-in default variable name to which the result is assigned. We can refer to this name in the next statement:

```
>> (ans-12)/2
ans =
  100
```

It would be better to assign the result/expression to the variable of your own choosing:
>> sun=47+13
sun =
 60

Typing `sun` at the prompt shows that the variable `sun` has the value 60:

>> sun
sun =
 60

Variable names can be up to 63 characters long, start with a letter, and contain only letters, numbers or the underscore “_” character.
Variable names are case sensitive: `sun` and `Sun` are different!

Multiple commands can appear on the same line, provided they are separated by a comma - if you want to see the result of the previous command - or a semicolon if you want to suppress the display:

>> pc=24; mac=13, computers=sun+pc+mac
mac =
 13
computers =
 97

This also shows that Matlab can evaluate expressions involving previously defined variables. However, each variable must be assigned a value before it is used in calculations. For example,

>> unix_workstations=sun+alpha
??? Undefined function or variable 'alpha'.

All variables in the workspace can be listed with the command
>> who
Your variables are:
ans mac sun
computers pc

To get information about who (or any other Matlab command), type

>> help who

WHO List current variables.
WHO lists the variables in the current work-
space.
WHOS lists more information about each variable.
...etc.

clear command removes all variables from the workspace;
clear some_variable removes some_variable from the
workspace.

In the examples above we manipulated with integer numbers. To per-
form basic operations on real numbers (rational & irrational), Matlab
uses familiar from the Fortran course double precision floating-point
arithmetic. As we will see later discussing the floating point arithmetic,
Matlab computations use about 16 decimal digits. However, unlike in
Fortran or C, we do not need to declare a type (integer, real) of our vari-
ables.
Consider the example: compute the volume of a sphere with a radius of
0.69 cm ($V = 4\pi r^3/3$).
First, in Matlab π is pi. Typing
```matlab
>> r = .69; V = 4*pi*r^3/3
V =
    1.3761
```
displays the result using 5 digits (default format). If more digits are needed, we can use `format` command, which controls how numbers appear on the screen. Read help on `format`, which is rather informative:

```matlab
>> help format
```
```
FORMAT Set output format.
   All computations in MATLAB are done in double precision.
   FORMAT may be used to switch between different output
   display formats as follows:
   FORMAT         Default. Same as SHORT.
   FORMAT SHORT   Scaled fixed point format with 5 digits.
   FORMAT LONG    Scaled fixed point format with 15 digits.
   FORMAT SHORT E Floating point format with 5 digits.
   FORMAT LONG E Floating point format with 15 digits.
   .......etc.
Thus, for example

```matlab
>> format long e
>> V
V =
 1.376055281384172e+000
```
outputs more digits; `e` here stands for “exponent”, e.g.,

```matlab
>> 254.178
ans =
 2.541780000000000e+002
```

254.178 = 2.54178 × 10². To return to the default mode, type
>> format short

Note, that \texttt{format} does not affect computations.
Matlab also knows complex numbers. Letters \texttt{i} and \texttt{j} can be used as imaginary part, unless redefined:

$$\texttt{>> (1+2i)*(1-2i)}$$
\[
\texttt{ans = 5}
\]

$$\texttt{>> (1+2i)/(1-2i)}$$
\[
\texttt{ans =}
\begin{align*}
-0.6000 &+ 0.8000\text{i} \\
\end{align*}
\]

If variable \texttt{i} was assigned and used as a real number,

$$\texttt{>> i=34}$$
\[
\texttt{i =}
\begin{align*}
34 \\
\end{align*}
\]

to redefine it to be a $\sqrt{-1}$, enter the command \texttt{clear i,j} or:

$$\texttt{>> i=sqrt(-1)}$$

Here \texttt{sqrt(x)} is a built-in Matlab mathematical function; many other elementary and special functions are available: \texttt{exp(x), log(x), log10(x), sin(x), tan(x)}, etc. To find the proper Matlab “spelling” of a function name, \texttt{lookfor} command is useful, for example:

$$\texttt{>> lookfor cosecant}$$
ACSC  Inverse cosecant.
ACSCH Inverse hyperbolic cosecant.
CSC   Cosecant.
CSCH   Hyperbolic cosecant.

lookfor searches Matlab system files for the string cosecant, and finds csc(x). lookfor can take some time to complete, type Ctrl-c to interrupt the search.

EXERCISES
1. Evaluate in Matlab and display results using different formats

   a) \[ \frac{4\sqrt{5} - 2\sqrt{6}}{(4\sqrt{3} + 4\sqrt{2})(4\sqrt{3} - 4\sqrt{2})} \]

   b) \[ 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{293}}} \} \]

   c) \[ \sin\left( \text{asin} \frac{3}{5} + \text{asin} \frac{8}{17} \right) - \frac{77}{85} \]

2. Explain the difference between \[ \exp(\pi/3i), \exp(\pi/3*i), \exp(\pi/3/i) \].

3. Check the formulas \[ e^{ix} = \cos x + i \sin x \] and \[ \sin(ix) = i \sinh x \] for \[ x = \frac{\pi}{6}, \frac{2\pi}{3}. \]

4. Compute magnitude and angle of \[ xy \] and \[ x/y \], where \[ x = \frac{1}{2} + i\frac{\sqrt{3}}{2}, \]

   and \[ y = \frac{1}{\sqrt{2}} (1 + i). \] (explore help on abs and angle commands)